

Fundamentals of software development on the Java platform Working program of the academic discipline (Syllabus)

Branch of knowledge	12 Information technologies
Specialty	123 Computer engineering
Educational program	Computer systems and networks
Discipline status	Selective
Form of education	intramural (full-time)/extramural
Year of training, semester	3rd year, autumn semester
Scope of the discipline	4 credit, 120 hours
Semester control/	Test
control measures	
Lessons schedule	//rozklad.kpi.ua
Language of teaching	English
Information about	Lecturer: senior teacher, Oleksii Aleshchenko
the course leader	alexey.aleshchenko@gmail.com
/ teachers	Laboratory: senior teacher, Oleksii Aleshchenko
	alexey.aleshchenko@gmail.com
Placement of the course	//comsys.kpi.ua

Details of the academic discipline

Level of higher education First (bachelor's)

Program of educational discipline

1. Description of the educational discipline, its purpose, subject of study and learning outcomes

The discipline "Fundamentals of software development on the Java platform " is aimed at students mastering the methods and means of programming tasks of arbitrary complexity using the methodology based on the object-oriented paradigm, using the Java platform. Knowledge of the basics of software development on the Java platform is necessary for creating software for computer systems, real-time systems, Internet applications, and mobile devices.

The purpose of teaching the discipline "Fundamentals of software development on the Java platform " is:

ABILITY : for abstract thinking, analysis and synthesis; work in a team; use modern methods and programming languages to develop algorithmic and software; create system and application software for computer systems and networks; to ensure the protection of information processed in computer and cyber -physical systems and networks for the purpose of implementing the established information security policy; systematically administer, use, adapt and operate existing information technologies and systems; identify, classify and describe the operation of software and technical means, computer and cyber -physical systems, networks and their components by using analytical methods and modeling methods; design, implement, administer and maintain global, local intelligent software- configured computer networks; develop, adapt, use software to improve the efficiency of high-performance computer systems;

organization of computing processes in high-performance computer systems with different structural organization based on the use of the latest planning and dispatching technologies and modern operating systems;

KNOWLEDGE: basics of project management; to identify, formulate and solve technical problems of the specialty, using the methods that are most suitable for achieving the set goals ; technical characteristics, design features, purpose and rules of operation of software and technical means of computer systems and networks for solving technical problems of the specialty;

SKILLS : conducting experiments, collecting data and modeling in computer systems; apply knowledge to identify, formulate and solve technical problems of the specialty, using methods that are most suitable for achieving the set goals; to solve problems of analysis and synthesis of means characteristic of the specialty; apply knowledge of technical characteristics, design features, purpose and rules of operation of software and technical means of computer systems and networks to solve technical problems of the specialty; develop software for embedded and distributed applications, mobile and hybrid systems, calculate, operate equipment typical for the specialty; perform experimental research on professional topics; perform parameter calculations of individual computer systems, computer networks; be able to create and maintain databases.

2. requisites and post- requisites of the discipline (place in the structural and logical scheme of training according to the relevant educational program)

Necessary disciplines: " Programming. Part 1. Programming", "Data structures and algorithms", "Higher mathematics. Part 1", "Analytic geometry and linear algebra".

3. Content of the academic discipline

Topic 1. General characteristics of the Java language. Comparison with other programming languages. Simple Types and Basics of Java Syntax.

Topic 2. Classes and methods in Java. Packages and interfaces.

Topic 3. Working with arrays in Java.

Topic 4. Working with deadlines in Java. String classes, String Buffer, String Builder.

Topic 5. Method overloading. Constructor overloading. Access control. Static elements.

Topic 6. Properties (fields). Inheritance of properties. Inner and anonymous classes.

Topic 7. Creation of multi-level hierarchies. Object class.

Topic 8. Methods. Imitation of methods. Polymorphism. Super and final specifiers.

Topic 9. Implementation of polymorphism. Overriding methods. Early and late binding.

Topic 10. Collections in Java. Linked lists.

Topic 11. Exception handling and unit testing.

Topic 12. Memory management, object destructors and Garbage Collector.

Topic 13. Package java.util.stream.

Topic 14. Events and event-based management of application behavior.

4. Educational materials and resources

Basic :

- Java programming: computer workshop [Electronic resource]: teaching. help _ for studies _ specialty 122 "Computer science", educational and professional program "Computer monitoring and geometric modeling of processes and systems" / KPI named after Igor Sikorskyi; editor: Yu. A. Tarnavskyi. Electronic text data (1 file: 686 Kbytes). Kyiv: KPI named after Igor Sikorskyi, 2021. 95 p. https://ela.kpi.ua/bitstream/123456789/41885/1/Java-programming.pdf
- 2. Synopsis of lectures from the software module "Object-oriented programming" / Developer: assistant Oleksiy Vadimovich Aleshchenko. Department of Computer Engineering FIOT. Approved at the department meeting (Minutes No. 11 dated May 24, 2017)

https://comsys.kpi.ua/katalog/files/konspekt-lekciy-oop-1.pdf

3. Fundamentals of software development on the Java platform. Methodical instructions for performing laboratory work for bachelor's degree holders in the majors: 121 Software engineering, 123 Computer engineering, 126 Information systems and technologies of all forms of education / Compiled by: Aleschenko O.V. - K.: KPI named after Igor Sikorskyi, 2022. [Electronic resource]. Approved by the Department of Computing (Protocol No. 10 dated 05/25/2022). Agreed by the Methodical Commission of FIOT (protocol No. 10 dated 09.06.2022). https://comsys.kpi.ua/methodichni-vkazannya-po-disciplinam.

Additional :

4. Tsybulnyk S. O. Software development technologies-1. Computer workshop [Electronic resource]: teaching. help _ for studies _ specialty 151 "Automation and computer-integrated technologies", educational and professional program "Computer-integrated technologies and navigation and control systems" / S. O. Tsybulnyk ; KPI named after Igor Sikorsky. Kyiv: KPI named after Igor Sikorskyi, 2021. 126 p. https://ela.kpi.ua/bitstream/123456789/41516/3/Tekhnolohii-rozrobky-prohramnoho-zabezpechennia_KompPrakt.pdf

Educational content

5. Methods of mastering an educational discipline (educational component)

Full-time education

			Number	of hours		
Names of sections and tonics		including				
Numes of sections and topics	In total	Lecture s	Practical (seminar)	Laboratory work	SRS	
Topic 1. General characteristics of the Java language. Comparison with other programming languages. Simple Types and Basics of Java Syntax.	9	2	-	3	4	
Topic 2. Classes and methods in Java. Packages and interfaces.	6	2	-	-	4	
Topic 3. Working with arrays in Java.	9	2	-	3	4	
Topic 4. Working with deadlines in Java. String classes, String Buffer, String Builder.	9	2	-	3	4	
Topic 5. Method overloading. Constructor overloading. Access control. Static elements.	6	2	-	-	4	
Topic 6. Properties (fields). Inheritance of properties. Inner and anonymous classes.	11	4	-	3	4	
Topic 7. Creation of multi-level	9	2	-	3	4	

hierarchies. Object class.					
Topic 8. Methods. Imitation of					
methods. Polymorphism. Super	9	2	-	3	4
and final specifiers.					
Topic 9. Implementation of					
polymorphism. Overriding	6	2	-	-	4
methods. Early and late					
binding.					
Topic 10. Conections in Java. Linked lists	10	6	-	-	4
Tonic 11 Exception handling					
and unit testing.	8	4	-	-	4
Topic 12. Memory					
management, object	6	2	_	_	4
destructors and Garbage	Ū	-			
Collector.					
Topic 13. Package	7	2	_	-	5
java.util.stream.		_			-
Topic 14. Events and event-					
based management of	7	2	-	-	5
application behavior.					
MCW	4	-	-	-	4
Test	4	-	-	-	4
Total in the semester:	120	36	-	18	66

Correspondence form teaching

			Number	of hours		
Names of sections and tonics		including				
Numes of sections and topics	In total	Lecture	Practical	Laboratory	SRS	
		S	(seminar)	work	5/15	
Topic 1. General						
characteristics of the Java						
language. Comparison with	٥	1	_	2	6	
other programming	5	1		2	0	
languages. Simple Types and						
Basics of Java Syntax.						
Topic 2. Classes and methods						
in Java. Packages and	7	1	-	-	6	
interfaces.						
Topic 3. Working with arrays in	7 25	0.25	_	1	6	
Java.	7,25	0,25		1	0	
Topic 4. Working with						
deadlines in Java. String	7 25	0.25	_	1	6	
classes, String Buffer, String	7,25	0,25		T	0	
Builder.						
Topic 5. Method overloading.						
Constructor overloading.	6 25	0.25	_	_	6	
Access control. Static	0,23	0,25			0	
elements.						

Topic 6. Properties (fields). Inheritance of properties. Inner and anonymous classes.	7,25	0,25	-	1	6
Topic 7. Creation of multi-level hierarchies. Object class.	9	1	-	2	6
Topic 8. Methods. Imitation of methods. Polymorphism. Super and final specifiers.	7,25	0,25	-	1	6
<i>Topic 9. Implementation of polymorphism. Overriding methods. Early and late binding.</i>	7,25	0,25	-	-	7
Topic 10. Collections in Java. Linked lists.	8	1	-	-	7
<i>Topic 11. Exception handling and unit testing.</i>	7,25	0,25	-	-	7
Topic 12. Memory management, object destructors and Garbage Collector.	7,25	0,25	-	-	7
Topic 13. Package java.util.stream.	8	1	-	-	7
Topic 14. Events and event- based management of application behavior.	8	1	-	-	7
MKR	7	-	-	-	7
Test	7	-	-	-	7
Total in the semester:	120	8	-	8	104

Lecture classes

Full-time education

lecture	The title of the lecture tonic, the list of main questions and tasks for the SPS
no	The title of the lecture topic, the list of main questions and tasks for the sits
1	"Introduction to Java ". General characteristics of the Java language. Comparison with
	other programming languages. Simple Types and Basics of Java Syntax.
	SRS: Partially or completely complete the first laboratory work of this credit module in the
	Java programming language.
2	"Introduction to Java. Continuation". Classes and methods in Java. Packages and
	interfaces.
	CRC: Create multiple methods in multiple different classes that reside in different packages
	and implement different interfaces.
3	"Working with arrays in Java ". One-dimensional, multi-dimensional arrays and objects
	representing arrays in Java.
	SRS: Partially or completely complete the second laboratory work of this credit module in
	the Java programming language.
4	"Working with deadlines in Java ". String classes, String Buffer, String Builder.

	SRS: Partially or completely complete the third laboratory work of this credit module in the
	Java programming language.
5	"Class methods. Overloading, static and access". Method overloading. Constructor
	overloading. Access control. Static elements.
	CRC: Create multiple overloaded methods with different access modifiers.
6	"Properties (fields) of the class. Anonymous classes on the example of sorting an array of
	objects". Anonymous classes. Comparator interface. Compare method. Sorting an array of
	objects. Arrays class. The Sort method.
	SRS: Partially or completely complete the fourth laboratory work of this credit module in the
	Java programming language.
7	"Imitation and Visibility Management". Properties (fields). Inheritance of properties.
	Visibility management.
	CRC: Create a class with multiple fields with different scopes. Create a class that inherits
	from the previous one. Try to access the fields of the previous class in it and create your own
	fields with the same names.
8	"Hierarchies of objects". Creation of multi-level object hierarchies through inheritance
	and/or aggregation. Object class.
	SRS: Partially or fully complete the fifth laboratory work of this creait module in the Java
0	programming language.
9	final specifiers
	SPS: Dartially or fully complete the sixth laboratory work of this credit module in the
	anguage lava programming
10	"Implementation of polymorphism" Implementation of polymorphism Overriding
10	methods Early and late hinding
	CRC: Create a class with several methods. Create a class that inherits from the previous one
	and overrides its methods. Create an instance of the second class, the reference to which
	will store the variable of the first class. Try to access through the specified variable of the
	first class to the overridden method from the second class.
11	"Collections in Java ". Collections in Java. Linked lists. Set and List interfaces.
	SRS: Try to create own class which implements any interface collections (without
	implementing an iterator and equivalence).
12	" Collections in Java. Continuation ". toArray methods. Iterators.
	SRS: Implement an iterator within the previous SRS.
13	" Collections in Java. Continuation ". Uniqueness of elements in collections of the Set type.
	Equivalence of objects.
	SRS: Implement the equivalence check of individual elements and the entire collection within
	the framework of the previous SRS.
14	"Exception Handling". Classes of description of exceptional situations. Own exceptional
	situations. Exception, Error, Runtime Exception.
	SRS: Create your own class to represent and handle your own exception.
15	"Modular testing". Building and using unit tests.
	SRS: Create your own class with methods for unit testing one of the classes written as part
	of one of the laboratory works of this credit module.
16	"Memory Management, Object Destructors and Garbage Collector ". The "garbage
	collection" system, the criterion for the presence of references to objects, the destructor.
	SRS: Familiarize yourself with the algorithms of the "garbage collection" system (Garbage
	Collector) in Java.

17	" Package java.util.stream ". Functional programming style. Pure functions. Map-reduce
	technology.
	SRS: Implement the algorithm of selection from an array by criteria using the
	java.util.stream package.
18	"Events and Event-Oriented Control of Program Behavior". Events in Java. AWT and Swing
	modules. Observer, JMS.
	CSC: Implement a program in the Java programming language that uses the event
	mechanism.

External form of education

lecture	The title of the lecture topic, the list of main questions and tasks for the SRS
10	"Introduction to Java" General characteristics of the Java Janaugge Comparison with
1	other programming languages. Simple Types and Basics of Java Syntax
	SRS: Partially or completely complete the first laboratory work of this credit module in the
	lava programming language
	"Introduction to Java Continuation" Classes and methods in Java Packages and
	interfaces
	CRC: Create multiple methods in multiple different classes that reside in different packages
	and implement different interfaces.
2	"Working with arrays in Java ". One-dimensional, multi-dimensional arrays and objects
	representing arrays in Java.
	SRS: Partially or completely complete the second laboratory work of this credit module in
	the Java programming language.
	"Working with deadlines in Java ". String classes, String Buffer, String Builder.
	SRS: Partially or completely complete the third laboratory work of this credit module in the
	Java programming language.
	"Class methods. Overloading, static and access". Method overloading. Constructor
	overloading. Access control. Static elements.
	CRC: Create multiple overloaded methods with different access modifiers.
	"Properties (fields) of the class. Anonymous classes on the example of sorting an array of
	objects. Imitation and Visibility Management". Properties (fields). Inheritance of
	properties. Visibility management. Anonymous classes. Comparator interface. Compare
	method. Sorting an array of objects. Arrays class. The Sort method.
	CRC: Create a class with multiple fields with different scopes. Create a class that inherits
	from the previous one. Try to access the fields of the previous class in it and create your own
	fields with the same names. Partially or completely complete the fourth laboratory work of
	this credit module in the Java programming language.
	"Hierarchies of objects". Creation of multi-level object hierarchies through inheritance
	and/or aggregation. Object class.
	SRS: Partially or fully complete the fifth laboratory work of this credit module in the Java
	programming language.
3	"Imitation of methods. Polymorphism". Imitation of methods. Polymorphism. Super and
	final specifiers.
	SRS: Partially or fully complete the sixth laboratory work of this credit module in the
	language Java programming.
	"Implementation of polymorphism". Implementation of polymorphism. Overriding
	methods. Early and late binding.

	CRC: Create a class with several methods. Create a class that inherits from the previous one and overrides its methods. Create an instance of the second class, the reference to which will store the variable of the first class. Try to access through the specified variable of the first class to the overridden method from the second class.
	"Collections in laws". Collections in laws Links dista Cat and List interference Collections in
	Collections in Java . Collections in Java. Linkea lists. Set and List interfaces. Collections in
	Java. Linkea lists. Set and List interfaces. toArray methods. Iterators. Uniqueness of
	elements in collections of the Set type. Equivalence of objects.
	SRC: Try to create a custom class that implements any collection interface with an iterator
	and equivalence implementation.
	"Exception Handling and Unit Testing". Classes of description of exceptional situations.
	Own exceptional situations. Exception, Error, Runtime Exception. Building and using unit
	tests.
	SRS: Create your own class to represent and handle your own exception. Create your own
	class with methods for unit testing one of the classes written as part of one of the
	laboratory works of this credit module.
	"Memory Management, Object Destructors and Garbage Collector ". The "garbage
	collection" system, the criterion for the presence of references to objects, the destructor.
	SRS: Familiarize yourself with the algorithms of the "garbage collection" system (Garbage
	Collector) in Java.
4	"Package java.util.stream". Functional programming style. Pure functions. Map-reduce technology.
	SRS: Implement the algorithm of selection from an array by criteria using the
	java.util.stream package.
	"Events and Event-Oriented Control of Program Behavior". Events in Java. AWT and Swing
	modules. Observer, JMS.
	CSC: Implement a program in the Java programming language that uses the event
	mechanism.
L	· · · ···

Laboratory classes

Full-time education

No. z/p	The name of the laboratory work	Number of aud. hours
1	<i>The main types and operators of the Java programming language (Topic 1)</i>	3
2	Arrays that are represented as objects (Topic 3)	3
3	Strings that are represented as objects (Topic 4)	3
4	Classes and their properties (Topic 6)	3
5	Relations between classes, construction of hierarchies (Topic 7)	3
6	Inheritance and polymorphism (Topic 8)	3
	Together:	18

External form of education

No z/n	The name of the laboratory work	Number of aud.
NO. 27P		hours

1	<i>The main types and operators of the Java programming language (Topic 1)</i>	2
2	Arrays that are represented as objects (Topic 3)	1
3	Strings that are represented as objects (Topic 4)	
4	Classes and their properties (Topic 6)	1
5	Relations between classes, construction of hierarchies (Topic 7)	2
6	Inheritance and polymorphism (Topic 8)	1
	Together:	8

6. Independent work of student

Full-time education

		1	
No	The name of the topic submitted for independent processing	Number of	
1NO.		hours of	
2/0		SRS	
1	"Introduction to Java ". Partially or completely complete the first laboratory	Λ	
	work of this credit module in the Java programming language.	4	
2	"Introduction to Java. Continuation". Create several methods in several		
	different classes that are in different packages and implement different	4	
	interfaces.		
3	"Working with arrays in Java ". Partially or completely complete the second	Д	
	laboratory work of this credit module in the Java programming language.	4	
4	"Working with deadlines in Java ". Partially or completely complete the third	4	
	laboratory work of this credit module in the Java programming language.	,	
5	"Class methods. Overloading, static and access". Create multiple overloaded	4	
	methods with different access modifiers.	nodifiers.	
6	"Properties (fields) of the class. Anonymous classes on the example of sorting		
	an array of objects". Partially or completely complete the fourth laboratory	2	
	work of this credit module in the Java programming language.		
7	"Imitation and Visibility Management". Create a class with multiple fields		
	with different scopes. Create a class that inherits from the previous one. Try to	2	
	access the fields of the previous class in it and create your own fields with the		
	same names.		
8	"Hierarchies of objects". Partially or completely complete the fifth laboratory	4	
	work of this credit module in the Java programming language.	,	
9	"Imitation of methods. Polymorphism". Partially or completely complete the	Д	
	sixth laboratory work of this credit module in the language Java programming.	7	
10	"Implementation of polymorphism". Create a class with several methods.		
	Create a class that inherits from the previous one and overrides its methods.		
	Create an instance of the second class, the reference to which will store the	4	
	variable of the first class. Try to access through the specified variable of the first		
	class to the overridden method from the second class.		
11	"Collections in Java ". Try to create a custom class that implements any	2	
	collection interface (without implementing an iterator and equivalence).	2	
12	" Collections in Java. Continuation ". Implement an iterator within the	1	
	framework of the previous SRS.	1	

13	" Collections in Java. Continuation ". Implement the verification of the		
	equivalence of individual elements and the entire collection within the	1	
	framework of the previous SRS.		
14	"Exception Handling". Create your own class to represent and handle your own exception.	2	
15	"Modular testina". Create your own class with methods for unit testing one of		
_	the classes written as part of one of the laboratory works of this credit module.	2	
16	"Memory Management, Object Destructors and Garbage Collector ".		
	Familiarize yourself with the algorithms of the "garbage collection" system (4	
	Garbage Collector) in Java.		
17	" Package java.util.stream ". Implement the algorithm of selection from the	F	
	array according to the criterion using the java.util.stream package.	5	
18	"Events and Event-Oriented Control of Program Behavior". Implement a		
	program in the Java programming language that uses the event mechanism.	5	
19	"Preparation for Modular control work (MCW)"	4	
20	"Preparation for the test"	4	
	Together:	66	

External form of education

No.		Number	
z/p	The name of the topic submitted for independent processing	of hours of	
1	"Introduction to Java ". Partially or completely complete the first laboratory work		
	of this credit module in the Java programming language. Create several methods	10	
	in several different classes that are in different packages and implement different	12	
	interfaces.		
2	"Working with arrays in Java ". Partially or completely complete the second	G	
	laboratory work of this credit module in the Java programming language.	0	
3	"Working with deadlines in Java ". Partially or completely complete the third	6	
	laboratory work of this credit module in the Java programming language.	0	
4	"Class methods. Overloading, static and access". Create multiple overloaded	6	
	methods with different access modifiers.	0	
5	"Properties (fields) of the class. Anonymous classes on the example of sorting		
	an array of objects. Imitation and Visibility Management". Create a class with		
	multiple fields with different scopes. Create a class that inherits from the previous	6	
	one. Try to access the fields of the previous class in it and create your own fields	0	
	with the same names. Partially or completely complete the fourth laboratory		
	work of this credit module in the Java programming language.		
6	"Hierarchies of objects". Partially or completely complete the fifth laboratory	6	
	work of this credit module in the Java programming language.	D	
7	"Imitation of methods. Polymorphism". Partially or completely complete the	6	
	sixth laboratory work of this credit module in the language Java programming.	0	
8	"Implementation of polymorphism". Create a class with several methods. Create		
	a class that inherits from the previous one and overrides its methods. Create an		
	instance of the second class, the reference to which will store the variable of the	7	
	first class. Try to access through the specified variable of the first class to the		
	overridden method from the second class.		

9	"Collections in Java ". Try creating a custom class that implements any collection interface with an iterator and equivalence implementation.	7
10	"Exception Handling and Unit Testing". Create your own class to represent and handle your own exception. Create your own class with methods for unit testing one of the classes written as part of one of the laboratory works of this credit module.	7
11	"Memory Management, Object Destructors and Garbage Collector ". Familiarize yourself with the algorithms of system operation and "garbage collection". Collector) in Java.	7
12	" Package java.util.stream ". Implement the algorithm of selection from the array according to the criterion using the java.util.stream package.	7
13	"Events and Event-Oriented Control of Program Behavior". Implement a program in the Java programming language that uses the event mechanism.	7
14	"Preparation for Modular control work (MCW)"	7
15	"Preparation for the test"	7
	Together:	104

Policy and control

7. Policy of academic discipline (educational component)

- rules for the protection of laboratory work:
 - \circ the student provides the program code for laboratory work,
 - the student defends the provided software code through an interview;
- deadline and rescheduling policy:
 - the student has the right to submit and resubmit laboratory work up to and including the day of assessment,
 - there is no limit on the number of folds;
- academic integrity policy:
 - the student has the right to protect the program code that was written not only by him, but in this case the student must understand "what" and "how" this code performs, be able to use it as a basis for making modifications that may be suggested by the teacher.

8. Types of control and rating system for evaluating learning outcomes (RSO)

Types of control from the educational discipline "Fundamentals of software development on the Java platform " include:

Laboratory works:

Independent performance of six laboratory works is planned. The topics of laboratory works are coordinated in time and content with the topics of lectures. Carrying out laboratory work in full allows you to acquire practical programming skills on the Java platform.

Current control:

It is planned to carry out control work (MKR)

Semester control:

Assessment is conducted in the form of an interview with the student to objectively determine the level of knowledge, skills and practical skills acquired during the semester

The student's semester rating consists of the points he receives for the types of work in accordance with Table 1.

Table 1

Type of educational work	Total by type of work
Performance and protection of laboratory work No. 1	15
Performance and protection of laboratory work No. 2	15
Performance and protection of laboratory work No. 3	15
Performance and protection of laboratory work No. 4	15
Performance and protection of laboratory work No. 5	15
Performance and protection of laboratory work No. 6	15
MCW Rk	10
Rp	100
(Rz) as desired	20

Assessment of individual types of student academic work (in points)

The individual current rating of the student (**Rp**) consists of the points he receives for performing laboratory work (**Rl**) and MKR (**Rk**). During the semester, students perform 6 laboratory works. The maximum number of points for each laboratory work is 15. Points are awarded for:

- theoretical component 7 points,
- practical component 8 points.

The maximum possible score for laboratory work is 15 points. The maximum number of points for all laboratory works is $6 \times 15 = 90$ points.

Calculation of the scale size (R) of the rating.

The sum of the weighted points of control measures during the semester is:

Rp = RI + Rk, where Rp is the student's semester rating (MCR, laboratory work).

A necessary condition for a student's admission to credit is his individual semester rating (Rp), not less than 40 points, and the absence of arrears from laboratory work and MKR. If the mentioned requirements are not met, the student will not be admitted to the credit.

Table of correspondence of rating points to grades on the university scale:

Scores	Rating
100-95	Perfectly
94-85	Very good
84-75	Fine
74-65	Satisfactorily

64-60	Enough
Less than 60	Unsatisfactorily
Admission conditions not met	Not allowed

9. Additional information on the discipline (educational component)

As part of the study of the discipline "Fundamentals of software development on the Java platform ", crediting of points obtained as a result of distance courses is allowed, provided that the program of this course is agreed with the teacher.

Working program of the academic discipline (syllabus): **Compiled by** Oleksii Aleshchenko, a senior lecturer at the Department of Computing **Approved** by the Department of Computing (Protocol No. 10 dated 25 May 2022) **Agreed** by the Methodical Commission of the faculty (protocol No. 10 dated 09 June 2022)